Modern particle accelerators provide exceptional beams for new discoveries in science. The required flexibility, number of operation modes, and better performance in simultaneously more compact and more energy-efficient accelerators demand advanced control methods. One major challenge is the start-up of such accelerators, which requires frequent manual intervention. Low repetition rates, often only one acceleration event per second, lead to slow optimization rates, thus demanding expert knowledge. Although a complete autonomous accelerator seems far from being reachable, this project takes the first steps by bringing reinforcement learning to accelerator operation. Reinforcement learning yields a policy for every initial state taking the impact of the current action on the future into account, eventually replacing the need for manual intervention. |
Publications
- Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning: Jan Kaiser et al., arXiv, doi: 10.48550/arXiv.2306.03739
- Learning-based Optimisation of Particle Accelerators Under Partial Observability Without Real-World Training: Jan Kaiser et al., Proceedings of the 39th International Conference on Machine Learning, doi: https://proceedings.mlr.press/v162/kaiser22a.html
- Accelerating Linear Beam Dynamics Simulations for Machine Learning Applications: Oliver Stein et al., Proceedings of the 13th International Particle Accelerator Conference, doi: 10.18429/JACoW-IPAC2022-WEPOMS036
- First Steps Toward an Autonomous Accelerator, a Common Project Between DESY and KIT: Annika Eichler et al., Proceedings of the 12th International Particle Accelerator Conference, doi: 10.18429/JACoW-IPAC2021-TUPAB298
- Machine Learning Based Spatial Light Modulator Control for the Photoinjector Laser at FLUTE: Chenran Xu et al., Proceedings of the 12th International Particle Accelerator Conference, doi: 10.18429/JACoW-IPAC2021-WEPAB289
Team Members
Annika Eichler | Scientific areas: accelerator | |
Jan Kaiser | Scientific areas: accelerator | |
Oliver Stein | Scientific areas: accelerator |