Machine Learning for optimization of design and automated system control of particle accelerator |
Contacts
To get in touch with the accelerator team, please contact Ilya Agapov or Annika EichlerTeam members
- Ilya Agapov
- Lynda Boukela
- Annika Eichler
- Christian Grech
- Arne Grünhagen
- Nur Zulaiha Jomhari
- Jan Kaiser
- Raimund Kammering
- Maximilian Schütte
- Oliver Stein
- Sergey Tomin
- Bianca Veglia
Related projects
Recent publications
- Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations: Jan Kaiser et al., Phys. Rev. Accel. Beams, doi: 10.1103/PhysRevAccelBeams.27.054601
- Large Language Models for Human-Machine Collaborative Particle Accelerator Tuning through Natural Language: Jan Kaiser et al., arXiv, doi: 10.48550/arXiv.2405.08888
- Learning to Do or Learning While Doing: Reinforcement Learning and Bayesian Optimisation for Online Continuous Tuning: Jan Kaiser et al., arXiv, doi: 10.48550/arXiv.2306.03739
- Predictive Maintenance for the Optical Synchronization System of the European XFEL: A Systematic Literature Survey: Arne Grünhagen et al., BTW2023 - Datenbanksysteme für Business, Technologie und Web, doi: 10.18420/BTW2023-70
- Anomaly detection at the European X-ray Free Electron Laser using a parity-space-based method: Annika Eichler et al., Physical Review Accelerators and Beams, doi: 10.1103/PhysRevAccelBeams.26.012801